1 THE CORRIDOR TODAY

B CYPRESS COLLEGE

CERRITOS CENTER FOR THE PERFORMING ARTS

D STANTON FARMERS'
MARKET

RESIDENTIAL

F MAIN STREET,

- 20 miles long and varies in width from 90 to 195 feet
- Serves civic centers, schools, parks, shopping, entertainment and visitor destinations
- Home to 2.3 million people and 1.1 million jobs
- More than 90% travel to work by car
- Majority of freeways and major streets operating at or beyond capacity in peak periods
- Limited connections to the regional transportation system

2 THE CORRIDOR IN 2035

INCREASE IN POPULATION

Population forecast to increase by 13% with more than 304,000 anticipated new residents

INCREASE IN JOBS & ECONOMIC VITALITY

Jobs are forecast to increase by 13% with more than 140,000 new jobs

MORE TRAFFIC...

1.2 million more daily trips produced in the Corridor and 1.5 million new trips attracted to the Corridor, increasing congestion and travel times on our freeways and streets.

HOWWILL IS IMPACTYOU?

FOR RESIDENTS

FOR BUSINESS OWNERS

CONSIDER THE MANY USES THAT THIS RIGHT-OF-WAY COULD PROVIDE:

- More local and regional connections for residents, employees, and visitors
- Sites for city-based plans providing residential, retail or job space to accommodate future growth within station areas without signficantly increasing traffic
- Much-needed community park and open space resources
- A linear pedestrian and bicycle system linking Corridor recreational resources
- Related parking and circulation improvements

With an average width of more than 100 feet, the Corridor rightof-way offers much more than the opportunity of simply creating a new transportation system. It offers the possibility of creating a landscaped spine of open spaces, plazas, bike trails, and pedestrian paths connecting communities.

NO BUILD ALTERNATIVE

Represents the Study Area in 2035, if no Corridor transportation improvements are approved and built

Includes committed highway and transit projects identified in:

- SCAG 2008 Regional Transportation Plan (RTP)
- LACMTA 2009 Long Range Transportation Plan (LRTP)
- OCTA 2006 Long Range Transportation Plan (LRTP)

Represents the baseline against which the other alternatives will be evaluated

Both Counties Los Angeles County Project Orange County Project

HIGH-SPEED RAIL

Los Angeles/Anaheim Corridor

TRANSIT PROJECTS

Exposition LRT Phases I and II Crenshaw/LAX LRT Transit Corridor Metro Green Line LRT Extension to LAX Metro Green Line Extension to Torrance

Regional Connector

Wilshire Subway Extension to Century City

Anaheim Fixed Guideway Project

Santa Ana/Garden Grove Fixed Guideway Project

Metrolink – High Frequency Service

Metrolink Station Improvements

Regional Gateways .

HIGHWAY PROJECTS

I-5 Mixed Flow and Carpool Lanes (I-605 to OC line)

I-5 Carmenita Road Interchange Improvement

I-710 South and/or Early Action Projects

I-605 "Hot Spots" Interchange Projects

I-5 Improvements (SR-55 to SR-57)

I-605 Key Intersection and Arterial Connections
Countywide Signal Synchronization Network Plan

GOODS MOVEMENT

BNSF Grade Separations in Gateway Cities

TRANSPORTATION SYSTEMS MANGEMENT (TSM) ALTERNATIVE

Includes all of the No Build improvements

Includes additional low cost improvements that maximize the use of the existing transportation network, such as:

- Bus service improvements
- Intersection improvements
- Signal synchronization
- Non-motorized improvements

BRT - BUS RAPID TRANSIT

Speed: 22 mph average, 35 mph max.

Distance Between Stops: 1.0 miles

Possible # of Corridor Stations/Stops: 32

Capacity: 57 seated, 108 peak

Frequency (Peak Hours): 4-5 mins.

Frequency (Mid-day): 10 minutes

Construction Cost Per Linear Mile: \$28-30 million at-grade

Power Source: CNG motor

LRT - LIGHT RAIL TRANSIT

Speed: 22-35 mph average, 55 mph max.

Distance Between Stops: 1.0-1.5 miles

Possible # of Corridor Stations: 20-32

Capacity: 228 seated, 432 peak

Frequency (Peak Hours): 7-8 mins.

Frequency (Mid-day): 12 minutes

Construction Cost Per Linear Mile: \$80 million at-grade, \$330 million subway

Power Source: Electric catenary

Speed: 22 mph average, 55 mph max. Distance Between Stops: 1.5-3.0 miles Possible # of Corridor Stations/Stops: 11-32

Capacity: 136 seated, 258 peak Frequency (Peak Hours): 20-30 mins. Frequency (Mid-day): 30-60 minutes Construction Cost Per Linear Mile: \$22-25 million at-grade, \$330 million subway Power Source: Clean diesel motor or

electric catenary

COMMUTER RAIL

Speed: 42 mph average, 70 mph max. Distance Between Stops: 6.0-7.0 miles Possible # of Corridor Stations/Stops: 4-5 Capacity: 500 seated

Frequency (Peak Hours): 20-30 mins. Frequency (Mid-day): 60-90 minutes Construction Cost Per Linear Mile: \$4-8 million at-grade

Power Source: Clean diesel motor

STREETCAR

Speed: 8.5 mph average, 45 mph max.

Distance Between Stops: 0.2-0.5 miles

Possible # of Corridor Stations/Stops: 64-160

Capacity: 30 seated, 157 peak
Frequency (Peak Hours): 13 minutes
Frequency (Mid-day): 20-40 minutes
Construction Cost Per Linear Mile: \$38
million at-grade, \$330 million subway
Power Source: Electric catenary

HIGH SPEED RAIL

Includes maglev, steel-wheel, diesel locomotive, multiple unit service

Speed: 90-95 mph average, 110-270 mph max.

Distance Between Stops: 10.0-20.0 miles Possible # of Corridor Stations: 2-3

Capacity: 400 seated

Frequency (Peak Hours): 15-20 minutes Frequency (Mid-day): 30-60 minutes

Carabaration Carb Davidina and Milana

Construction Cost Per Linear Mile: maglev \$140 million; steel-wheel \$110 million, both \$330

million subway

Power Source: Electric motor

What transportation options are appropriate?

HOW?

How should the transportation improvement fit in your community?

MAKING THE **DECISION**

- Access?
- Air Quality?
- Design?
- Noise?
- Cost?
- Speed?

How should the transportation options be evaluated?

KEEPING YOU INFORMED

How should we communicate with you during the 22-month study process?

- Community Meetings
- Email updates
- Website postings

What else?

November 2011

2

WE ARE HERE

Preliminary Analysis

February-April 2010

Project Initiation / Scoping May-June 2010

PHASE 1
ENVISIONING
OUR FUTURE

3

Initial Alternatives Screening
July-December 2010

4

Final Screening
January-September 2011

PHASE 2

EXPLORING THE POSSIBILITIES

5

Draft Alternatives Analysis
Report

October 2011

6

Final Alternatives Analysis
Report With Recommendations
November-December 2011

PHASE 3
REALIZING OUR
PREFERRED
FUTURE

Next Steps
SCAG/LACMTA/OCTA Actions

Regional connectivity to and from the Corridor?

Community fit?

Local connectivity for the Corridor's communities?

BUILDING OUR FUTURE THROUGH OUR CHOICES TODAY.

What is important to you?

Improving our environment?

Cost to build? Cost to ride?

COMMUNITY OUTREACH

Creation of jobs?

